

AMANAC WORKSHOP

WHAT KIND OF BUILT ENVIRONMENT FOR FUTURE GENERATIONS?

Introduction

Sustainable development has been defined as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs"

On 1 January 2016, the 17 Sustainable
Development Goals (SDGs) of the 2030 Agenda
for Sustainable Development — adopted by world
leaders in September 2015 at an historic UN
Summit — officially came into force.

With these new goals, countries will mobilize efforts to end poverty, fight inequalities and tackle climate change

Introduction

Sustainable development can be pursued in various ways, such as **focusing** on innovation, safety, resource efficiency, and others

In terms of sustainable development of product/services, a Life Cycle Approach can be helpful

Sustainable Goals – ReSHEALience Project

To provide an innovative contribution to sustainable development of infrastructures, it is possible to work on **service life extension**

The main goal of the project ReSHEALience is to develop an Ultra High Durability Concrete (UHDC) and a Durability Assessment-based Design (DAD) methodology for structures, to improve durability and predict their long-term performance under Extremely Aggressive Exposures

One of the Key Performance Indicators (KPI 2a) is the increase of at least 30% of concrete service life

Sustainable Goals – ReSHEALience Project

Nevertheless, it is not obvious that, even with a longer service life, infrastructures made in UHDC are more sustainable than infrastructures made in traditional concrete.

For this reason, it is important to study the overall life-cycle of the developed solutions and verify that UHDC provides the best performance in environmental, economic and social terms.

Methodologies for Sustainability assessment in construction industry

In order to perform sustainability assessment, a set of proven methodologies for measuring and analyzing consequences of products under investigation has to be used.

Environmental Life-Cycle Assessment (LCA)

Life-Cycle Costing (LCC)

Social LCA (S-LCA)

Focus on LCA

INTERNATIONAL STANDARD

ISO 14040

Second edition 2006-07-01 INTERNATIONAL STANDARD

ISO 14044

> First edition 2006-07-01

Environmental management — Life cycle assessment — Principles and framework

Management environnemental — Analyse du cycle de vie — Principes et cadre

Environmental management — Life cycle assessment — Requirements and guidelines

Management environnemental — Analyse du cycle de vie — Exigences et lignes directrices

3.2 life cycle assessment LCA

compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle

Focus on LCA

Why? For whom? How?

What? How many?

How? Where? How many?

Why?

G&S: description of motivations and aims of the study. Definition of Functional Unit and System Boundaries.

LCI: description of the product and its process units included in the system, considering single inputs/outputs

LCIA: assessment of impacts quantities, generated by inputs/outputs identified in the inventory phase and related to the product system.

Interpretation: results interpretations and conclusions. Analyses for "continuous improvement".

Focus on LCA

Interpretation

Analyses for "continuous improvement"

Comparisons among different solutions (ReSHELience: different mix designs)

LCA – ReSHEALience Project – Infrastructures under investigation

*For innovative solutions, LCA has to be performed also at material level

Thank you for your attention

Maria Chiara Caruso

email: mariachiara.caruso@stress-scarl.it

